
Shortening the
Last Mile of Your
Release Process
A Pragmatic Approach to Managing Risk in
Continuous Delivery

Just Because You Can,
Doesn’t Mean You Should
If you’re like many leading edge development teams, you’ve
worked hard to create an environment for continuous delivery of
software. You probably have -- or are working on:

• Developer testing through unit, integration, and API tests

• Continuous integration that gives your developers near-
immediate feedback when they check in code

• Automated mechanisms to deploy new code into production

With a solid team of developers, a QA team focused on testability
and automation, regular code review, and a dev ops infrastructure
that can push your code at will and then monitor its vital signs,
you’re feeling good about continuous delivery.

And then there’s the last mile.

There’s an old joke in software development that 90 percent done
means you’re half-way through the project. That’s the last mile --
the elusive 10 percent when you need to decide whether to deploy
the software to production, and for which customers. It’s the time
when you think the most about risk. It includes tasks such as:

• Regression testing the app to ensure that changes don’t have
unforeseen functional consequences;

• Identifying front-end bugs that are hard to write tests for, but
cause your users fits and affect conversion rates;

• Certifying the app across all the browsers, operating systems,
and form factors you need to support.

• Ensuring that the app works the way customers think it should,
through the many paths they take, sometimes through manual
testing, dogfooding, user acceptance tests, or beta programs.

Development The last mile
Developer
Testing

Continuous
Integration

Automated
Deployment

SHIP

1

If you’ve done everything right, you can push code into production
whenever you want, but the last mile of the process is still
challenging because you need to know whether the reward for your
business exceeds the possible risks -- and for all the automation
you’ve done, you’re still not sure.

If you have a consumer-facing app, you face considerable market
risk: lost revenue, lost time, bad reviews, app abandonment, the
embarrassment of pulling a product from the app store. As a result,
even productive development teams typically slow down during
the last mile, sometimes leading to multi-day regression testing
cycles, inefficient bug reporting from “volunteer” testers, expensive
software developers performing manual tests when they could
be coding, and time spent patching instead of working on new
features.

Continuous delivery focuses heavily on developer-driven test
automation throughout the development process, and most teams
aspiring to a continuous delivery model can boast high levels of
automated test coverage -- particularly unit test coverage. Yet many
teams slow down at the last mile because developer-driven test
automation at the last mile is hard to do well, not only because
such tests are notoriously flaky, but because human judgment is
sometimes required when software is designed for humans.

In this paper we’ll discuss practical strategies for optimizing the last
mile: how to prioritize the development of automated tests while
efficiently deploying human judgment in the testing and release
process.

2

Perhaps you’re familiar with the Testing Pyramid, originally
developed by Mike Cohn and refined over the years by various
people.

Every version of the Testing Pyramid has unit tests at the base.
Integration tests, which may be of several types, typically form
a second layer, and “end-to-end functional tests” top out the
pyramid.

The percentage of effort will vary based on the company and the
circumstances, but a rough rule of thumb suggested by Google
is that 70 percent of your tests should be at the bottom of the
pyramid, 20 percent in the middle, and 10 percent at the top. That
10 percent represents the tests that most closely approximate your
customers’ user experience.

In other words, tests that most closely approximate what your users
will actually experience get the least amount of developer testing.

Why is this?

What Makes a Good Test

TEST

Automated Unit Tests

Automated Integration Tests

End-to-End Tests

3

In a continuous delivery environment, the most important function
of developer-driven testing is not to catch bugs before they reach
your customer, it’s to prevent bugs from being introduced into the
codebase in the first place. To fulfill that mission, developer tests
need to be fast to execute, reliable, and specific in the errors they
uncover, so developers can run tests that meet these criteria every
time they change code and find out pricesly what breaks.

Table 1 enumerates five characteristics that make up an ideal
test. We can see from this table that compared with end-to-end
automated tests, unit tests are particularly valuable as part of a
developer’s day-to-day work because they are fast and scale well.

This is why development organizations have prioritized the
development of unit tests over end-to-end tests. If you haven’t
done this and you have a lot of end-to-end tests that are flaky
or expensive to maintain, this table may explain some of your
frustration.

If you’re working with a legacy application, there’s a strong
temptation to write a lot of functional tests to automate regression

Fast to execute Developers can execute tests on their own computers and
run hundreds of them in a minute. End-to-end automated
tests are slower to execute.

Unit Wins

Reliable and robust Unit tests are isolated and small, and thus execute reliably.
End-to-end automated tests are often flaky and not robust
to user interface changes.

Unit Wins

Scalable and timely
to create

Developers create unit tests with their code, so they are
timely and scale linearly with your development team. End-
to-end automated tests require effort at the end of a project
and are costly to maintain.

Unit Wins

Specific Since unit tests operate against individual units of code, they
give developers precise information about what has failed,
down to the line number.

Unit Wins

User-sensitive Here end-to-end automated tests beat unit tests: since
they’re using the full software system, they’re closer to what
the end-user actually sees than unit tests are.

End-to-end wins

Table 1

4

testing. As Michael Feathers has shown, this is typically a bad
idea. Better to search for inflection points within the code and
methodically write write tests against that code, then refactor it to
make it more testable. Only your development team can do this
kind of work, so from a resource management standpoint you are
better off using manual testing to regress the application rather
than asking your developers to write flaky tests that don’t improve
the code. Many organizations have found crowdtesting to be a
practical way to augment their testing efforts in these cases.

5

Now we come back to the last mile. What’s the best way, once
you’ve reach the last mile -- or the top of the testing pyramid -- to
optimize your testing mix?

Recall that while unit tests prevent bad code from entering your
trunk, last-mile tests help you understand the risk-reward calculus
inherent in releasing software to customers. In short, does the new
functionality you’re offering justify the risk that you’ll introduce
new bugs or otherwise damage your company’s brand?

Despite this difference, let’s think about last mile tests using the
same criteria we’ve already used for developer tests -- with two
differences. First, an end-user’s point of view becomes relatively
more important the closer we are to shipping. Second, the available
options are different. For the last mile, we have three different
testing strategies, each with strengths and weaknesses.

• End-to-end automated tests: tests that use the browser or a
mobile simulator to drive test cases that simulate human use of
the application.

• QA Team (or extended team including developers): functional
tests performed by your in-house team, whether a dedicated
QA team or developers deputized temporarily to test the
application.

Testing in the Last Mile

End-to-End Tests

End-to-End
automated Tests QA Team

Crowdtesting

6

Criterion Machine-Driven Internal Manual Crowdtest

Fast to execute Fastest to execute. Time consuming
convene an internal
team to test, and a
“bug bash” is expensive
if your team’s time is
valuable.

Quick to convene and
can test in parallel,
delivering results in an
hour or two.

Reliable and robust Theoretically execute
the same way every
time, but are not robust
to small changes in
code or environment
and often need to
tweaking.

Your internal team
knows the application
and knows what’s
changed, so they test
what’s changed. But
small numbers of
people mean higher
variability.

Crowd testers are
numerous, so they
cover your application
broadly. Human testers
are not thrown off by
small changes to the UI
the way a machine is.

Scalable and timely to
create

Challenging to write
well and generally can’t
be written until feature
development is far
along.

Often difficult to find
enough capacity to test
when you have a big
release.

Scales instantly; you
can convene more
testers when you have
more to test.

Specific Can be flaky and
generate non-specific
errors.

Particulalry helpful
in debugging difficult
issues.

Particulalry useful
in reproduce issues
across devices and
environments.

User-sensitive Only a simulation of
your end-user.

Human-driven, but
often too familiar with
your app to test like an
end-user.

Diverse and closest to
your user base.

• Crowdtest: functional tests, which may combine tightly
scriptedtests cases and more organically defined session-based
tests, performed by a group of outside software testers using
real devices.

Here each type of test has its advantages, and your optimal strategy
will depend on the state of your application and the risks associated
with obvious customer-facing problems. Table 2 explains the trade-
offs.

If your application is changing very slowly and is well-covered
by unit tests and integration tests, you can prioritize end-to-end
automated tests. Although such tests can be flaky and expensive to
maintain, the relative stability of your application means that you
won’t be throwing away work on your test scripts every week.

Table 2

7

On the other hand, if your application is changing rapidly, if your
unit test coverage is less than you would like, and if there is a
great deal of market risk associated with failures in production,
crowdtesting may be your best option for the last mile.

Crowdtests can return results as quickly as an hour or two, and
unlike an internal team “bug bash” you can easily get more
testers when your application has undergone more changes.
Crowdtesters can test the application on real devices, and because
they constitute a more diverse user community, they more closely
approximate your ultimate customer base.

Do
• Write tests when you are sure the app is very

stable, against very stable parts of the app.

• Create an automated “smoke test” that’s fast
enough to run with every build and covers the
application’s most crucial features.

Don’t
• Spend time writing automated tests against

features that are changing rapidly. Devote
your developers’ time to improving unit and
integration test coverage instead.

End-to-End Automated Tests

Do
• Use in-house teams to test features that are

sufficiently complex that explaining them
outsiders would involve significant training.

• Embed internal testers with development
teams for close debugging support.

Don’t
• Force developers to run tedious manual tests

to “teach them the value of writing their own
tests.”

• Expect that your team to uncover the same
kinds of issues that your customers will find.
People who created an application or know it
well carry expectations about how works that
your customers don’t share.

QA Team

8

Crowdtesting

Do
• Use crowd tests when there are many paths

through your application.

• Prioritize crowd testing when the user
interface is changing rapidly.

• Use crowdtesters to cover legacy applications
during significant refactors

• Use crowd tests when UX problems will
impact your revenue or brand, or you’re
distributing the application through an app
store and the price of making a small change
is high.

Don’t
• Give crowdtesters such strict instructions that

they become effectively human versions of
automated tests. Take advantage of testers’
skill and powers of discovery.

9

10

Mapping Your Last Mile

When your “last mile” tests happen depends on your branching
and release strategy. Continuous delivery is framework of practices
that ensure your code can be rapidly and safely deployed from your
trunk to production at any time. But while this may be true from a
technical standpoint, as we have seen, businesses must perform
a risk/reward calculation in deciding when to deliver software to
customers. At the highest level, we see last mile testing occurring in
one of three moments: prior to the merge of new features into the
main codeline, on a staging environment using the main codeline,
or in production.

Feature Branch Testing

Feature branch testing has gone somewhat out of fashion in a
continuous delivery environment because a feature branch is
further from your production environment than tests of a true
staging environment. However, depending on the types of risks
your business encounters, extensive last-mile testing at the feature
branch may make sense. In particular:

• When it is impractical to “eat your own dogfood” exposing
your code to people outside your team at this point helps
avoid unanticipated user experience challenges. While many
organizations shy away from a “full user acceptance test”
among target users because recruiting the right customers
is challenging, a crowdtest is a quicker, more process-
friendly alternative. Crowd testing is particularly effective for

Merge

Master branch

Feature branch

SHIPTEST

Mapping Your Last Mileapplications with many user interface paths, and these paths
should be tested earlier in the process in case any options need
to be foreclosed or changed.

• When performing major refactoring, a more thorough last mile
test with a full regression will reduce risks. Refactoring of front-
end components is particularly risky, since automated tests
often miss user interface changes that are obvious to customers.

Testing on Staging
Performing your last mile tests on a staging server is the tried-
and-true method, employed by most of the continuous delivery
organizations we see. Here the biggest challenges mirroring
production conditions as closely as possible. Some best practices
include:

• Maintaining data for staging that is as close to production
as possible. It is often worth automating the obfuscation of
production data so tests in the staging environment reflect the
latest data from production.

• Testing across a range of devices. Android devices, in particular,
feature a range of screen sizes and resolutions. Last-mile tests
should ensure a consistent user experience for mobile apps
and responsive web apps across mobile platforms. Several
options exist, from hosted emulators to cloud-based devices;
crowdtesters using real devices will most closely mirror real-
world conditions.

Merge

Master branch

Feature branch SHIP

TEST

Staging Server

11

Testing in Production

It seems like heresy, but some organizations test in production -- by
choice. Particularly good candidates for this are companies with
good testing coverage at the unit and integration level that have
reliable end-to-end tests, and whose business-critical activities
are not likely to be affected by functional or UI bugs. Advantages
include:

• There is no human bottleneck, so you can “push on green.”

• Your production environment is a production environment, so
you’re not worried about simulations affecting the outcome of
tests

• When you need to update server code to support new features
in apps, you can push new code to the server and test the new
apps against it in a production environment.

Some best practices for last-mile testing in production include:

• Ideally, you want to be able to push “new” code to a subset
of users first using a feature flag or other means of redirecting
traffic; your testing corps, including crowdtesters, can be among
the vanguard users.

• You can combine testing with monitoring to get a more holistic
view of errors in production, decreasing the time to resolution.

• With crowdtesting, you can schedule an in-production test for
an optimal time, either when your customers are less likely to
be visiting your website or when your developers can react most
effectively to the results of the test.

Merge

Master branch

Feature branch

Production Open for customers

DEPLOY CUSTOMERS

TEST

12

Conclusion
Technology and DevOps methodologies are rapidly advancing, to
the point where the technical barriers to distributing software to
customers are almost non-existent in many cases. But with great
power comes business responsibility, and the question of when --
or even whether -- it makes business sense for customers to receive
new software remains challenging.

Businesses investing in continuous delivery of software need
the best possible information at the appropriate time to make
that judgment. A well-considered last-mile testing strategy that
combines automated checks and human insight is a requirement
for all such businesses.

13

Column A: Level Column B: Importance Risk Factor

Level of User Interface
Change Release over
Release

0 21 3 4 0 21 3 4

Android Platform
Support

iOS Platform Support

Integration with
Third-Party Logins

0 21 3 0 21 3

Integration with Third-
Party Payments

0 21 3 0 21 3

Uses GPS or has locale
constraints

0 21 3 0 21 3

Dependent on
device permissions,
hardware

0 21 3 0 21 3

Responsive web UI 0 21 0 21

User-generated
content

0 21 0 21

Result

Mitigating Risks with Crowdtesting

Apps that change a lot, depend on features of the user’s device, and
are sensitive to a user’s location and network conditions need the
most thorough last-mile testing. Multiply column A by column B
then add the risk factors to see how useful crowdtesting is for you.

1-20 Points 21-40 Points 41+ Points

With strong unit and integration test
coverage, automated end-to-end tests
should get you where you need to go.

Your application requires considerable
human oversight. If your in-house team
is constrained, investigate crowdtesting.

Crowdtesting will almost certainly help
you release software faster and with
greater confidence.

0 21 3 4 0 21 3 4

0 21 3 4 0 21 3 4

14

For Further Reading

The ice-cream cone anti-pattern:

https://watirmelon.blog/2012/01/31/introducing-the-software-testing-ice-cream-cone/

Google warns against too many end-to-end automated tests:

https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

A different view of the testing pyramid:

https://www.joecolantonio.com/2015/12/09/why-the-testing-pyramid-is-misleading-think-
scales/

How Google releases software:

https://docs.google.com/presentation/d/15gNk21rjer3xo-b1ZqyQVGebOp_
aPvHU3YH7YnOMxtE/edit#slide=id.g437663ce1_53_376

Dealing with Flaky Tests:

http://martinfowler.com/articles/nonDeterminism.html

Working with Legacy Code:

http://www.netobjectives.com/system/files/WorkingEffectivelyWithLegacyCode.pdf

When to automate functional tests (and when not to):

http://www.softwaretestinghelp.com/10-tips-you-should-read-before-automating-your-
testing-work/

https://www.techwell.com/techwell-insights/2016/01/when-and-when-not-automate

http://techbeacon.com/dos-donts-testing-automation

Testing in production:

http://sdtimes.com/testing-in-production-risk-vs-reward/

http://www.neotys.com/blog/tips-for-testing-in-production/

15

